Женский вопрос: гендерные стереотипы в украинском ИТ. Образование

Несмотря на развитие ИТ-индустрии, доля женщин в персонале ИТ-компаний и на Западе, и в Украине остается довольно скромной. Среди сотрудников Apple, eBay, Facebook, Google, Linkedin, Twitter, Yahoo женщины составляют 30-40% всего штата и в среднем 15-20% технических специалистов.

Согласно исследованию DOU «Портрет украинского ИТ-шника» доля женщин в украинских ИТ-компаниях в 2015 году составляла 14% — и это учитывая стремительный рост с 7% в 2011.

Почему так происходит? Возможно, женщины обладают меньшими способностями в сферах STEM (Science, Technology, Engineering, Math) в целом и в ИТ в частности? Или более ориентированы на семью? А может быть, на решение выбрать ИТ как сферу обучения и работы влияют гендерные стереотипы?

Данная статья посвящена поиску ответов на эти вопросы. Сегодня мы поговорим про обучение в школе и в вузах, потому что уже на этом этапе наблюдается сдвиг в гендерном распределении. В следующей статье речь пойдет о работе в украинском ИТ.

В статье использованы результаты исследований, в основном зарубежных, а также результаты опроса DOU, проведенного в конце января-начале февраля этого года.

Детали проведения опроса

Опрос был проведен с 20 января по 4 февраля 2016 года на сайте DOU. Общее количество участников — 2987 (2439 мужчин и 548 женщин). Цель опроса, представленная на сайте — изучение ИТ как сферы работы. Гендерная направленность опроса не афишировалась сознательно, чтобы не искажать выборку респондентов и не повлиять на их мнение до заполнения анкеты. По этой же причине была закрыта возможность оставлять комментарии к записи.

На всех графиках с результатами цветными рамками вокруг цифр отмечены статистически значимые различия (уровень значимости 90%). Отсутствие рамки означает, что различие статистически не значимо — это зависит как от разницы показателей, так и от количества респондентов в анализируемой группе.

Итак, почему женщины реже выбирают обучение на технических специальностях?

Среди украинских студентов вузов по специальностям ИТ и инженерия женщины составляют менее 25%. Такое неравномерное распределение характерно и для других стран. Например, в США в последние годы доля женщин среди студентов направления computer science составляет 15-20% — результат снижения с 35-40% в 80-х годах.

Та же ситуация видна и в данных нашего опроса: среди работающих в ИТ женщин техническое образование есть у 57%, среди мужчин — у 79%. Среди мужчин также больше людей без высшего образования — это может быть следствием большей доли опрошенных в возрасте до 21 года, которые могут еще продолжать учиться.

Поскольку обучение на технических специальностях в вузах требует знания математики, посмотрим на гендерные различия в знаниях этого предмета.

Факты таковы: в школьных математических тестах типа SAT (США) и PISA (страны OECD, в т.ч. большинство стран Европы и Северной Америки) средние результаты девочек ниже, чем средние результаты мальчиков. Долгосрочный тренд результатов SAT показывает, что величина гендерного разрыва не менялась за последние 40 лет. В то же время, различие средних баллов хотя и значимо, но не слишком велико: около 2% в тестах PISA и около 6% в тестах SAT.

Казалось бы, из этих результатов можно сделать вывод, что девочки менее склонны к математике «от природы». Однако если изучить вопрос глубже, обнаруживаются интересные закономерности.

— Культурные особенности стран

Различие оценок мальчиков и девочек (т.н. gender gap) коррелирует с уровнем гендерного равенства в стране. В более эмансипированных странах (Норвегия, Швеция) результаты математических тестов мальчиков и девочек не отличаются.

— Отсутствие различий на момент поступления в школу

До поступления в школу среди мальчиков и девочек не наблюдается значимых различий в знаниях математики. Однако уже через шесть лет показатели девочек снижаются на величину, эквивалентную 2,5 месяцам обучения. Снижение наблюдается среди всех подгрупп: с разным доходом, разной национальности, в разных регионах (исследование проведено в США), в семьях разного состава, в государственных и в частных школах. Внятных объяснений этому явлению не найдено.

— Большее количество мальчиков среди top performers

В качестве дополнительного аргумента о большей склонности мальчиков к математике иногда говорят о том, что среди лучших учеников больше мальчиков, чем девочек. Например, если взять 5% учеников с самыми высокими баллами, то мальчиков среди них будет гораздо больше, чем девочек. Результаты SAT и PISA это подтверждают.

Однако результаты мальчиков в принципе более вариативны. По сравнению с девочками, среди мальчиков меньше тех, кто набирает средние баллы и больше тех, кто набирает высокие или низкие баллы: распределение оценок мальчиков имеет более толстые «хвосты». В то же время результаты девочек ближе к среднему значению: очень способных или очень не способных среди них меньше (опять же, по сравнению с мальчиками).

Это касается не только математики. По данным PISA разброс оценок мальчиков выше для всех трех измеряемых категорий знаний: математика, чтение, наука. Это же исследование показывает, что неуспевающих учеников среди мальчиков больше, чем среди девочек — опять же, показатель более высокой вариативности.

Согласно другим исследованиям, более высокая вариативность присуща мужчинам в целом. Она проявляется не только в математике и не только в знаниях, но и в физических признаках, таких как рост, вес и т.п. Это может объясняться биологическими факторами (большая вариативность среди мужских особей вида — это механизм эволюционной адаптации к изменению условий проживания), а в случае со знаниями и навыками — еще и социальными. Например, более низкие требования к поведению мальчиков могут влиять на их успеваемость в будущем.

— Усидчивость

Бытует мнение, что девочки более усидчивы или старательны, чем мальчики.

Данные PISA показывают, что девочки действительно тратят больше времени на домашние задания, но неясно, чем это вызвано: «природой» или воспитанием.

Если бы мальчики тратили на домашние задания столько же времени, то их результаты стали бы лучше по всем направлениям — по науке они демонстрировали бы более высокие показатели (сейчас разницы нет), по математике увеличили бы разрыв, а по чтению немного подтянулись бы, но не догнали бы девочек (разрыв результатов в чтении выше чем в математике):

Чтобы понять, разделяют ли украинские ИТ-специалисты мнение о большей усидчивости женщин, мы в опросе просили оценить степень согласия с утверждением «Женщины лучше мужчин справляются с рутинной работой». Женщины менее согласны с ним — 21% против 27% среди мужчин.

Интересно проанализировать ответы на этот вопрос в разрезе групп. Например, среди женщин-девелоперов уровень согласия еще ниже — 18%, а среди женщин, работающих в QA и менеджменте уровень выше и не отличается от мужского. Согласие с этим утверждением и у мужчин, и у женщин растет с возрастом, а у женщин еще и с обретением семейного статуса. Правда, неясно, характеризует ли это людей так сказать «старшего поколения», или такая метаморфоза происходит с возрастом (опытом) со всеми.

— Уверенность в собственных знаниях

Хотя девочки и тратят больше времени на домашние задания, достичь более высоких результатов им мешает сравнительно низкая уверенность в своих знаниях. По данным PISA, девочки менее уверены в своих знаниях в математике по сравнению с мальчиками.

Можно предположить, что если они действительно менее способны к математике («от природы» или по другим причинам), то такая самооценка просто адекватна их уровню знаний. Однако данные показывают, что девочки менее уверены в себе независимо от реальных знаний. Если взять девочек и мальчиков с одинаковыми результатами тестов, девочки будут менее уверены в себе. Такое различие характерно для детей с любым уровнем знаний, причем максимальный разрыв в самооценке наблюдается среди top performers, то есть тех, кто показывает лучшие результаты.

Почему это важно? Потому что среди тех, кто одинаково оценивает свой уровень знаний, нет различий в результатах тестов. Девочки с самооценкой как у мальчиков сдают тесты так же как и мальчики. Но девочки, сдающие тесты так же как мальчики, менее уверены в себе. То есть можно сказать, что повышение уровня уверенности в своих знаниях до мужского снижает gender gap в оценках.

— Формат проведения тестов

Исследования показывают, что мужчины и женщины по-разному реагируют на соревновательный формат проведения тестирования.

В задачах на решение головоломок результаты мужчин и женщин практически не отличались, если тестирование проводилось индивидуально. Результаты улучшались, если тестирование проходило в группах одного пола. Но при тестировании в разнополых группах результаты женщин резко снижались.

Исследование среди студентов Стэнфорда показало, что женщины и мужчины с одинаковым уровнем знаний по-разному реагируют на выбор сложности задания. Мужчины выбирают более сложные задачи чаще, чем женщины. Однако если дать возможность выбрать задание, потренироваться, а потом еще раз выбрать задание, то женщины с высоким уровнем знаний становятся более уверенными в себе и выбирают более сложные задания практически так же часто, как и мужчины.

Сложно сказать, что больше влияет на такое различие в соревновательности: биология или воспитание и общественные нормы. К тому, как воспринимают женщин, проявляющих соревновательное поведение, мы еще вернемся, когда будем говорить о работе в ИТ.

— Убеждения

Итак, мы видим, что на gender gap в результатах математических тестов влияет уверенность в своих знаниях (независимо от их реального уровня), соревновательный характер проведения тестов, потраченное на обучение время, а также уровень гендерного равенства в стране.
Попробуем оценить, насколько велико влияние стереотипов.

Родительские ожидания. По данным PISA родители чаще ожидают, что их сыновья, а не дочери, будут работать в направлениях STEM (Science, Technology, Engineering, Math) — даже при одинаковом уровне знаний у детей.

И женщины, и мужчины склонны считать, что женщины хуже в математике. Когда нужно определить, кто лучше справится с арифметическим заданием, и нет другой информации кроме фотографии, то судьи — и женщины, и мужчины — считают, что участники-мужчины справятся лучше. Даже если предоставить информацию о реальных результатах выполнения заданий, и даже если результаты женщин-участниц не отличаются от результатов мужчин-участников (!), все равно судьи считают, что мужчины справятся лучше.

Эксперименты, определяющие влияние стереотипов. Интересные и неоднозначные данные зафиксированы в экспериментах, которые оценивают результаты математических тестов в зависимости от предварительной активизации гендерных стереотипов у участников.

Например, эксперименты с участием детей-азиатов показывают влияние и расовых, и гендерных стереотипов.

В ходе этих экспериментов и девочки, и мальчики лучше справлялись с тестами, когда им напоминали об их происхождении (просили перед тестом раскрасить картинку с детьми-азиатами). Однако если им напоминали об их поле (девочки раскрашивали картинку с девочкой, держащей куклу, а мальчики — с мальчиком, играющим в баскетбол), результаты девочек оказывались ниже, а мальчиков — выше, чем у контрольной группы.

Интересно, что эти закономерности обнаружились у детей 5-7 лет и 11-13 лет, в то время как в группах 8-10 лет и девочки, и мальчики показывали лучшие результаты при активации «гендерного вопроса». Исследователи объясняют это тем, что дети в возрасте 8-10 лет наиболее критично настроены в отношении противоположного пола и заявляют о превосходстве своего пола чаще, чем дети других возрастных групп.

Стереотипы влияют не только на женщин. Белые мужчины, которым перед тестированием напоминали, что азиаты лучше справляются с математическими тестами, показывали более низкие результаты. Влияние стереотипа (т.н. stereotype threat) тем сильнее, чем больше человек ассоциирует себя с группой, на которую распространяется стереотип. То есть чем больше мужчина-участник теста ассоциировал себя с белыми, тем сильнее на него влияли стереотипы о преимуществах азиатов. Аналогично, чем больше женщина ассоциирует себя со своей гендерной группой, тем сильнее на нее будут влиять стереотипы о женщинах.

В то же время, анализ данных NAEP (National assessment of educational progress) не показывает разницы в результатах тестов между теми, кому до тестирования задавали гендерно-стереотипные вопросы, и теми, кому их не задавали. Одно из возможных объяснений состоит в том, что цель NAEP — не оценка индивидуальных знаний конкретного ученика (никто из учеников не узнает свои результаты), а обобщенная оценка эффективности обучения в США. Соответственно, сдача экзамена предполагает меньше ответственности и соревновательности, что может снижать влияние stereotype threat.

Что думают украинские ИТ-шники о способностях к математике

Чтобы оценить, насколько украинские ИТ-специалисты согласны с мнением о гендерной разнице в математических способностях, мы в ходе опроса просили их оценить степень согласия с утверждением «Мужчины от природы более способны в математике, чем женщины».

В целом с ним согласны 32% мужчин и 21% женщин.

В некоторых группах разрыв между мнением мужчин и женщин особенно велик. Меньше всего женщин, согласных с этим утверждением — среди женщин с техническим высшим образованием (17%) и женщин-девелоперов (11%).

Итого

Гендерный дисбаланс в сфере ИТ и других технических направлений заметен уже при поступлении в вуз. По-видимому, он возникает во время обучения в школе и касается различий в оценках по математике (которая является основным предметом для поступления).

На данный момент девочки показывают в среднем более низкие результаты в математических тестах. Однако есть свидетельства связи результатов с гендерными стереотипами, родительскими ожиданиями, соревновательным характером теста и общей уверенностью в своих знаниях, которая у девочек ниже.

В результате действия всех этих факторов к моменту поступления в вуз доля женщин, желающих изучать технические специальности снижается в среднем до 25%. В будущем это соответственно отразится и на гендерном составе сотрудников ИТ-компаний.

В следующей статье мы обсудим, почему женщины и мужчины выбирают работу в ИТ, как они оценивают работу в этой сфере и свой профессиональный уровень, и почему женщины в итоге реже добиваются руководящих постов и меньше зарабатывают.

Похожие статьи:
Я уже 35 лет в IT, из них больше 20 — в разработке, в основном в роли играющего тренера. Занимался всеми видами поддержки, информационной...
Представьте себе ситуацию: однажды, придя на работу и проверив результаты ночного прогона автотестов, вы видите абсолютно красный...
Через війну цьогорічні випускники шкіл не складали ЗНО. Натомість Український центр оцінювання якості освіти (УЦОЯО) за три місяці...
Over the years, the amount of laws and regulations governing the food and drink industry has multiplied many times over. Suddenly, the whole industry is now paying attention to the dangers of contamination whether it comes from a...
В этой статье я хотел немного написать про наш опыт A/B-тестирования на нашем проекте и немного о том, какое отношение...
Яндекс.Метрика