Искусственный интеллект в медицине: тренды и возможности

[Об авторе: Наталия Сиромаха, директор по инжинирингу GlobalLogic. Имеет в своем портфолио широкий спектр проектов от healthcare до security в Украине, США, Канаде. Лидер инновационной лаборатории BrainMade в GlobalLogic. Занимается развитием бизнеса в харьковском офисе компании, где уже более 4 лет возглавляет медицинские проекты и управляет распределенным командами]

Эта статья подготовлена на основе доклада Наталии Сиромахи на Outsource People Kyiv 2017.

Индустрия здравоохранения — одна из самых быстрорастущих в мире. Ученые прогнозируют, что к 2030 году персонализированная медицина с использованием augmented artificial intelligence системы уже станет реальностью, а еще через 5 лет появятся первые больницы без докторов. О том, какие тренды формируют эту сферу сегодня, специфике работы с данными в медицине и о таймлайне использования AI в будущем, вы можете прочитать моей статье.

Тренды в мировой медицине

Сегодня в медицинской индустрии сформировался ряд трендов, которые влияют не только на работу крупных корпораций, страховых компаний и клиник, но и на жизнь каждого из нас. Работая над медицинскими проектами в IT-компании, мы внимательно отслеживаем любые изменения в медицине. Это помогает нам создавать наиболее эффективные решения, которые позволят улучшить качество жизни людей.

Один из ключевых трендов медицины — постоянный рост затрат на лечение пациентов. Этому есть несколько причин:

  • рост стоимости лекарств, оборудования;
  • увеличение стоимости медицинских услуг;
  • изменение количества и интенсивности используемых услуг (из-за того, что слишком поздно выявлено заболевание или неправильно определено лечение, необходимо больше визитов к врачу и больше дополнительных обследований).

Инвестиционные компании и компании медицинской индустрии заинтересованы в том, чтобы снижать стоимость лечения и услуг. Каким образом это осуществляется?

Во-первых, внедрение индивидуального подхода к лечению. Это возможность улучшить качество лечения, используя несколько методов:

  • отслеживать состояние пациента, собирать данные о нем;
  • делать удаленное обследование с помощью девайсов, которые передают состояние пациента;
  • возможность создать индивидуальный план лечения каждого пациента;
  • ранняя диагностика.

Во-вторых, более широкое внедрение generic лекарств. Ранняя диагностика позволяет использовать общедоступные, недорогие лекарства в протоколах лечения, а не специфичные и дорогостоящие. С другой стороны, фармацевтические компании проводят комплексные клинические исследования для вывода новых медикаментов на рынок. Процедура исследований многоэтапна, занимает несколько лет и требует значительных инвестиций. Таким образом, generic лекарства станут решением, которое поможет сократить издержки компаний на вывод новых узкоспециализированных лекарств на рынок.

Также важное направление — использование вспомогательного персонала для консультаций пациентов. Таким образом экономится время врачей. Медсестер привлекают для первичной оценки состояния пациента, выявления аномалий в результатах диагностики. Более того, проработка схем и алгоритмов лечения, создание анкет-опросников позволяет помочь немедицинскому персоналу определить состояние пациента и принять решение, нужна ли ему консультация доктора или нет. Эти же алгоритмы позволяют внедрять ботов для обработки первоначальных запросов от пациентов.

Возможности и применение AI в медицине

Системы artificial intelligence уже сегодня проходят испытательные применения, а в некоторых западных странах даже успешно используются.

Согласно исследованию Anand Rao «A Strategist’s Guide to Artificial Intelligence», вспомогательные системы (assisted systems) станут коммерчески доступны и будут активно использоваться к 2020 году. Так, системы image classification помогают врачу проводить качественную диагностику с минимальными затратами времени. Сейчас классификацию медицинских изображений и описание снимков делают рентгенологи, УЗИ-специалисты и др. Анализ снимков уже может быть осуществлен с использованием искусственного интеллекта автоматически.

С помощью искусственного интеллекта определяются пациенты группы риска. Этим пациентам доктор уделяет внимание в первую очередь. Таким образом, значительно экономится время и минимизируется возможность ошибки докторов. Например, есть программы для выявления меланомы.

Регулярно человечество сталкивается с эпидемиями. Многие наслышаны про Эбола, малярию и другие вспышки заболеваний, которые передаются как насекомыми, так и через воду. Система искусственного интеллекта, позволяющая контролировать и предсказывать эпидемии, находится в статусе клинических исследований, но уже использовалась и работает в Африке.

Сбор информации происходит при помощи дронов. Они фактически вылавливают комаров, анализируют их ДНК и дают прогноз: где и когда будет следующая эпидемия, — после чего происходит обработка территории риска. Такие системы позволяют предотвратить неконтролируемые вспышки эпидемий.

Дальнейшее развитие искусственного интеллекта приведет к использованию augmented artificial intelligence систем. Эти системы открывают нам новые возможности. Например, с высокой скоростью классифицировать снимки МРТ без вмешательства человека. Также создать персонифицированное лекарство и эффективное лечение на основе конкретных данных пациента — анализов и реакции на химические вещества. По прогнозам, такая услуга будет доступна для массового использования к 2030 году.

К 2035 году ожидается появление больниц без докторов. Это пример автономного искусственного интеллекта, когда система сама принимает решения. Да, конечно, доктора будут все еще нужны, но для каких-то простых кейсов будут доступны вышеописанные возможности AI.

Специфика работы с данными в медицине

В медицинской сфере все данные защищены: информация о каждом пациенте секретна и защищается законом и директивами HIPAA, GDPR. Клиники, исследовательские институты и компании не имеют права их распространять, передавать третьим лицам. Соответственно, есть определенные сложности, с которыми мы сталкиваемся в работе с медицинскими гигантами.

C точки зрения HIPAA, GDPR и защиты персональных данных мы должны обеспечивать защиту от утечки информации наших клиентов из медицинской индустрии. Соблюдение требований этих протоколов — неотъемлемая часть наших медицинских проектов.

Для того, чтобы прорабатывать какие-то модели, не в рамках коммерческих проектов, мы используем публичные деперсонифицированные базы данных. Существуют системы и ассоциации, которые позволяют использовать эти данные. Например, ассоциация по лечению рака. Мы можем использовать их открытую базу данных с уже деперсонифицированной информацией для создания прототипов и моделей систем.

Кроме того, у нас в компании есть специалисты, которые отслеживают, как мы работаем с данными, обеспечивают их защиту. Также у нас налажен процесс деперсонификации данных. Есть отдельные специалисты по этому направлению, которые обрабатывают базы для дальнейшего создания систем искусственного интеллекта.

Примеры использования AI в проектах

Когда человек болен диабетом, у него достаточно большой риск ослепнуть. Это заболевание называется ретинопатия. У нас было 11 367 снимков ретины глаза человека. Основываясь на этих данных, мы создали систему, которая позволяет определять вероятность этого заболевания, стадию, а также диагностировать его на раннем этапе. На данный момент точность составляет 60%. Это не идеальный показатель, но он получен на базе публичных данных. Такая система — пример assisted system. Она помогает врачу классифицировать больных по риску заболевания, и он принимает окончательное решение.

Мы использовали Google TensorFlow. Система работает на основе Convolutional Neural Network, OpenCV, языки — Python, JavaScript.

Следующая наша система — определение меланомы и классификация болезней кожи. Мы тоже использовали Google TensorFlow. Она помогает врачу принять решение о лечении пациента благодаря автоматической сортировке этих изображений без участия человека. Изначально мы использовали тестовые данные, на которых система училась принимать решения. Теперь, после загрузки снимка пациента, она выдает информацию и показатель вероятности возникновения заболевания.

Технологии, которые были использованы в этом случае: Convolutional Neural Network, OpenCV и Pre-trained модель ResNet. Pre-trained модель позволила нам ускорить процесс обучения и выйти на показатель в 75-80% точности. Для этого в базе должно быть не меньше 10-15 тыс. изображений. Чем больше изображений — тем более правильна модель. Каждая модель отрабатывается и обучается в несколько циклов. Она выстраивается, потом загружается новый сет данных, ее обучают и корректируют.

Итоги

Развитие современной медицины невозможно представить без внедрения IT-технологий. Цифровая трансформация постепенно захватывает все индустрии мира, помогая решать проблемы, которые стоят на пути их развития. Текущие тенденции в сфере здравоохранения привели к увеличению спроса и, соответственно, инвестиций в развитие решений с использованием искусственного интеллекта и Data Science.

Персональные данные пациентов, которые необходимы для работы IT-компаний, являются конфиденциальной информацией и регулируются такими нормативно-правовыми актами, как HIPPA и GDPR. Соблюдая требования международных директив, IT-компании используют исключительно деперсонифицированные данные и процесс работы с ними строго контролируется.

В целом работа над проектами в медицине достаточно сложна, ведь помимо навыков разработчика, необходимо иметь знания в медицине и смежных науках. Поэтому непрерывное обучение — ключевой навык для члена команды разработчиков в проектах медицинской сферы.

Похожие статьи:
Новый составитель ИИ дайджеста — Евгений Сидякин, founder & CEO Data Powers. Главное, что нужно знать об авторе — R&D Engineer, In love with data...
Мене звати Вадим Бараненко, я співпрацюю з ЕРАМ у ролі архітектора рішень. З парним програмуванням ознайомився у 2012-му...
12 березня ТОВ «Паріматч» заявило, що призупиняє свою діяльність через накладені РНБО санкції. Сайт компанії...
С минувшей пятницы компания BlackBerry начала фактические продажи своего первого Android смартфона BlackBerry Priv. Однако,...
There are lots of food ordering apps on the market these days, but one that is attempting to grab a slice of the pizza market is…Slice! The app, which used to be known as MyPizza, allows the...
Яндекс.Метрика